Vitamin D in neurologic disorders

Douglas J Lanska MD FAAN MS MSPH (Dr. Lanska of the Great Lakes VA Healthcare System and the University of Wisconsin School of Medicine and Public Health has no relevant financial relationships to disclose.)
Originally released September 24, 2012; last updated April 19, 2017; expires April 19, 2020

This article includes discussion of vitamin D in neurologic disorders, multiple sclerosis, cognitive impairment, Parkinson disease, stroke, and traumatic brain injury. The foregoing terms may include synonyms, similar disorders, variations in usage, and abbreviations.

Overview

Vitamin D status has been associated with a variety of neurologic disorders, including multiple sclerosis, cognitive impairment, Parkinson disease, and stroke, among others. This article describes the role of vitamin D in the healthy brain as well as the mechanisms by which vitamin D may provide immune modulation and neuroprotection in the diseased brain. The current evidence regarding the impact of vitamin D on the development and treatment of other neurologic diseases is described, with an emphasis on osteomalacic myopathy and on multiple sclerosis.

Key points

 

• Vitamin D status is associated with the incidence and prevalence of a variety of neuromuscular and neurologic disorders, including osteomalacic myopathy and multiple sclerosis.

 

• Vitamin D status also influences the risk of adverse outcomes in patients with neurologic diseases who are prone to fall, including the risk of hip and spinal compression fractures and other fragility fractures.

 

• Vitamin D receptors are found throughout the CNS. Receptor-mediated benefits for reducing CNS damage include anti-immune activation and neuroprotection.

 

• Supplementation with vitamin D may improve outcome in select neuroimmune and neurodegenerative neurologic disorders; additional trials are ongoing or proposed.

Historical note and terminology

The discovery of vitamin D (the “sunshine vitamin”) began with Scottish physician Theobald Palm's observation in the 1890s that rickets primarily affected children in the industrial cities of Europe, whereas those in more sun-exposed areas of Southeast Asia and Japan were unaffected (Ekpe 2009; Chesney 2012). A leading hypothesis at the time was that affected children in Europe had succumbed to an infectious source that caused bone deformities and fractures, yet despite the rampant infections Palm encountered on his Asian travels, those children were not affected by rickets. He surmised that a lack of sunlight exposure was the causative factor, and this was confirmed shortly thereafter by observational studies showing that children who had moved from low-light industrial areas to higher elevations or the countryside subsequently had improved bone health. In 1918, American biochemist Elmer McCollum (1879-1967) identified vitamin D as the crucial nutrient in cod liver oil, which was used at that time to prevent or cure rickets (McCollum 1967; Holt 1968; Day 1974). When combined with Palm's earlier observations about rickets, the connection between vitamin D and sunlight became clear. Vitamin D was quickly supplemented in diets globally, and nutritional rickets was essentially eradicated.

Vitamin D is a hormone, and many authors describe it as vitamin D hormone. It is a vitamin only under certain environmental conditions of inadequate exposure to ultraviolet light. Vitamin D plays an essential role in the regulation of calcium and phosphate homeostasis, but it has broader roles as well that include roles in neural development and neurotrophic signaling.

Vitamin D has been suggested as a causal or disease-modifying factor in a variety of neuromuscular and neurologic conditions, including osteomalacic myopathy and multiple sclerosis (muscle disorders are outside the scope of this review). Further study revealed a strong association between low vitamin D levels and increased multiple sclerosis rates, and this stimulated extensive research efforts to define the immune and genetic mechanisms by which vitamin D may influence the disease. Vitamin D status also influences the risk of adverse outcomes in patients with neurologic diseases who are prone to fall, including the risk of hip and stroke spinal compression fractures and other fragility fractures.

The content you are trying to view is available only to logged in, current MedLink Neurology subscribers.

If you are a subscriber, please log in.

If you are a former subscriber or have registered before, please log in first and then click select a Service Plan or contact Subscriber Services. Site license users, click the Site License Acces link on the Homepage at an authorized computer.

If you have never registered before, click Learn More about MedLink Neurology  or view available Service Plans.